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Shared Memory Parallel Model

UMA

Uniform memory access

NUMA

Non-uniform memory
access In real world
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OpenMP

OpenMP (Open Multi-Processing) is an API that
supports multi-platform shared-memory multi-
processing programming in C, C++, and Fortran.
It provides a set of compiler directives, library
routines, and environment variables that allow
developers to specify parallel regions, tasks, and
other parallelism constructs.
����� OpenMP provides us an easy way to transform
serial programs into parallel.
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Example 1: Hello OpenMP

#include <stdio.h>

#include <omp.h>

int main() {

printf("Welcome to OpenMP!\n");

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf("hello(%d)", ID);

printf("world(%d)\n", ID);

}

printf("Bye!");

return 0;

}

export OMP_NUM_THREADS=4

���� Output:

$ gcc -o hello_omp hello_omp.c -fopenmp # <-- Compiler Option
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Differences:
• Import OpenMP Header

• Preprocessing directive

• Will cover commonly
used directives

• Parallel Region

• Relates to the fork-join
model
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Fork-Join Model
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Fork-Join Model

Thread ID: omp_get_thread_num()
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OpenMP directives and constructs
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Work-Distribution Constructs

Overview for This Section

• How is work executed?
• parallel directive

• How is work distributed to threads?
• single directive
• section directive
• for directive

• for loop schedule
• Nested for loop

• In next section…
• directive: critical, atomic, barrier
• clause: private, shared, reduction
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OpenMP Directives

A legal OpenMP Directive must has the following format (C/C++):

Pragma Directive [clause[ [,]clause] ... ]
#pragma omp parallel, atomic, critical, ... 0 to many

• ������ For example:

#pragma omp parallel for collapse(2) private(tmp_v, d, v)

• Case sensitive
• Affects the block (single statement or wrapped by {}) after this directive
• �������� Here’s an official Cheat Sheet
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https://www.openmp.org/wp-content/uploads/OpenMPRefCard-5-2-web.pdf


Constructs

���� What is the difference between construct and directive?

������ An OpenMP construct is a formation for which the directive is executable.1

#pragma omp parallel // <--\--- Directive

{ // |

printf("Do sth."); // | Construct

} // ---/

1https://www.openmp.org/spec-html/5.2/openmpse14.html
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Work-distribution constructs

Work-distribution
constructs:
• single
• section
• for
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parallel Directive

#include <stdio.h>

#include <omp.h>

int main() {

printf("Welcome to OpenMP!\n");

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf("hello(%d)", ID);

printf("world(%d)\n", ID);

}

printf("Bye!");

return 0;

}

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 13/38



Combined Constructs and Directives

Example 2: parallel for Directive

// Addition of two vectors

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

// Addition of two vectors

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

������� Not 4x speed up

���� Overhead: any combination of excess or indirect computation time, memory,
bandwidth, or other resources that are required to perform a specific task.

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 14/38



Combined Constructs and Directives

Example 2: parallel for Directive

// Addition of two vectors

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

// Addition of two vectors

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

������� Not 4x speed up

���� Overhead: any combination of excess or indirect computation time, memory,
bandwidth, or other resources that are required to perform a specific task.

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 14/38



Combined Constructs and Directives

Example 2: parallel for Directive

// Addition of two vectors

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

// Addition of two vectors

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

������� Not 4x speed up

���� Overhead: any combination of excess or indirect computation time, memory,
bandwidth, or other resources that are required to perform a specific task.

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 14/38



Combined Constructs and Directives (Cont.)

Valid for loops that can be parallelized by OpenMP:
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Loop Schedule

���� Think about this…

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = f(i); // What if f is not O(1), eg. O(N)

}

Workload is unbalanced!

• schedule clause specifies how iterations of associatedloops are divided into
contiguous non-empty subsets, aka. chunks.

• Type: Static, Dynamic, Guided, Runtime, Auto
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Loop Schedule - Static

#pragma omp parallel for schedule(static)

for (int i = 0; i < N; i++) {

c[i] = f(i);

}

Is this a good choice?

�� Pros: Less overhead in scheduling
�� Cons: Workload may be unbalanced
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Loop Schedule - Dynamic

#pragma omp parallel for schedule(dynamic, 2)

for (int i = 0; i < N; i++) {

c[i] = f(i);

}

�� Pros: More flexible scheduling
�� Cons: More overhead in scheduling
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Loop Schedule - Guided

#pragma omp parallel for schedule(guided, 2)

for (int i = 0; i < N; i++) {

c[i] = f(i);

}

• Compare to static: May yield a better workload balance under certain
circumstances

• Compare to dynamic: Less overhead to dispatch tasks
• In practice: Just try if it works better
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Example 3: Let’s try out!

Source code at: 3_schedule.c
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Loop Schedule

Static, Dynamic, Guided, Runtime, Auto

Find optimal schedule? �� NP-complete!
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Nested for Loop

In some cases, we will encounter nested for loops. For example, matrix addition:

// Matrix Element-wise Addition

#pragma omp parallel for

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

#pragma omp parallel for collapse(2)

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

It’s not always a good idea to parallelize nested loops.

Think about locality and data dependency before you use collapse clause.
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Shared Data and Data Hazards
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Example: Data Hazards in Summation

#include <stdio.h>

#include <omp.h>

int main() {

int a[100];

int sum = 0;

// initialize

for (int i = 0; i < 100; i++) a[i] = i + 1;

// Sum up from 1 to 100

#pragma omp parallel for

for (int i = 0; i <= 99; i++) {

sum += a[i];

}

printf("Sum = %d\n", sum);

}
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How Data Hazards Happen?

���� This case is especially important, you will encounter this again and again in
future study, eg. Computer Organization and Database System.
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Scope and Data Hazard

• Shared & private data in default
• Explicit scopes definition

• private
• shared
• firstprivate
• lastprivate

• Data hazards happen when
operating shared data

int sum = 0;

// Sum up from 1 to 100

#pragma omp parallel for

for (int i = 0; i <= 99; i++) {

sum += a[i];

}
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Resolve Data Hazard

• Critical Section
• Atomic Operations
• Reduction
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Example: Solution with Critical Section

• Only one thread can enter critical
section at the same time.

• A critical section can contain
multiple statements.

• ������� Isn’t this serial again?

#pragma omp parallel for

for (int i = 0; i <= 99; i++) {

#pragma omp critical

{ sum += a[i]; }

}

printf("Sum = %d\n", sum);
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Example: Solution with Atomic Operation

• Atomic operation cannot be
separated.

• Only can be applied to one
operation

• Limited set of operators supported

#pragma omp parallel for

for (int i = 0; i <= 99; i++) {

#pragma omp atomic

sum += a[i];

}

printf("Sum = %d\n", sum);
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Example: Solution with Reduction

• Create temporary private
variables for each thread

• Reduce these private variables
in the end

• Limited set of operators
supported

#pragma omp parallel for reduction(+:sum)

for (int i = 0; i <= 99; i++) {

sum += a[i];

}

printf("Sum = %d\n", sum);
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Comparison

• Critical Region: Based on locking
• Atomic Operation: Based on
hardware atomic operations

• Reduction: only synchronize in the
end
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Another Example: Naïve GEMM

//General Matrix Multiplication (GEMM)

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

for (int k = 0; k < N; k++) {

c[i][j] += a[i][k] * b[k][j];

}

}

}
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Miscellaneous
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Threads Synchronize

• �� Barrier: Wait until all thread reach here
• Implicit barrier in parallel region
• nowait clause

• �� Locking: wait until obtain the lock
• Often apply to data structures
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Nested Parallel Region

• Disabled by default.
• Use omp_set_nested to
enable.

• Consider refactor the code.

int f(int n, int* a, int* b, int* c) {

#pragma omp parallel for

for (int i = 0; i < n; i++) {

c[i] = a[i] + b[i];

}

}

int main(){

...

#pragma omp parallel for

for (int i = 0; i < n; i++) {

f(n[i], a[i], b[i], c[i]);

}

}
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False Sharing

• Supposed to be private, but
actually perform like
sharing

• Seems working
independently, but actually
sharing the same cache line

• Does harm to parallel
performance

Be cache-friendly and avoid false sharing: Make use of space locality
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Summary: How to Optimize a program with OpenMP

1. Where to parallelize: Profiling
2. Whether to parallelize: Analyze data dependency
3. How to parallelize: Analysis and Skills

• Sub-task Distribution
• Scheduling Strategy
• Cache and Locality
• Hardware Environment
• Somtimes: transform recursion to iteration

4. Get Down to Work: Testing
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Tips

1. Ensure correctness while parallelizing
2. Be aware of overhead
3. Check more details in official documents

• For example, OpenMP on GPU.
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Thank You

Let’s have a break!
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