
Fundementals of Parallel Programming
OpenMP Section
HPC 101 - 2024 Summer

Lin Xi, Li Chenxiao @ ZJUSCT
July 8, 2024

Outline

1. Introduction

2. OpenMP directives and constructs

3. Shared Data and Data Hazards

4. Miscellaneous

ZJUSCT • HPC 101 - 2024 Summer | Outline • 1/38

Introduction

ZJUSCT • HPC 101 - 2024 Summer

���� Parallel Programming

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 2/38

���� Parallel Programming

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 2/38

Shared Memory Parallel Model

UMA

Uniform memory access

NUMA

Non-uniform memory
access In real world

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 3/38

OpenMP

OpenMP (Open Multi-Processing) is an API that
supports multi-platform shared-memory multi-
processing programming in C, C++, and Fortran.
It provides a set of compiler directives, library
routines, and environment variables that allow
developers to specify parallel regions, tasks, and
other parallelism constructs.
����� OpenMP provides us an easy way to transform
serial programs into parallel.

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 4/38

Example 1: Hello OpenMP

#include <stdio.h>

#include <omp.h>

int main() {

printf("Welcome to OpenMP!\n");

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf("hello(%d)", ID);

printf("world(%d)\n", ID);

}

printf("Bye!");

return 0;

}

export OMP_NUM_THREADS=4

���� Output:

$ gcc -o hello_omp hello_omp.c -fopenmp # <-- Compiler Option

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 5/38

Example 1: Hello OpenMP

#include <stdio.h>

#include <omp.h>

int main() {

printf("Welcome to OpenMP!\n");

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf("hello(%d)", ID);

printf("world(%d)\n", ID);

}

printf("Bye!");

return 0;

}

Differences:
• Import OpenMP Header

• Preprocessing directive

• Will cover commonly
used directives

• Parallel Region

• Relates to the fork-join
model

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 6/38

Example 1: Hello OpenMP

#include <stdio.h>

#include <omp.h>

int main() {

printf("Welcome to OpenMP!\n");

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf("hello(%d)", ID);

printf("world(%d)\n", ID);

}

printf("Bye!");

return 0;

}

Differences:
• Import OpenMP Header

• Preprocessing directive
• Will cover commonly
used directives

• Parallel Region

• Relates to the fork-join
model

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 6/38

Example 1: Hello OpenMP

#include <stdio.h>

#include <omp.h>

int main() {

printf("Welcome to OpenMP!\n");

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf("hello(%d)", ID);

printf("world(%d)\n", ID);

}

printf("Bye!");

return 0;

}

Differences:
• Import OpenMP Header

• Preprocessing directive
• Will cover commonly
used directives

• Parallel Region
• Relates to the fork-join
model

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 6/38

Fork-Join Model

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 7/38

Fork-Join Model

Thread ID: omp_get_thread_num()

ZJUSCT • HPC 101 - 2024 Summer | Introduction • 8/38

OpenMP directives and constructs

ZJUSCT • HPC 101 - 2024 Summer

Work-Distribution Constructs

Overview for This Section

• How is work executed?
• parallel directive

• How is work distributed to threads?
• single directive
• section directive
• for directive

• for loop schedule
• Nested for loop

• In next section…
• directive: critical, atomic, barrier
• clause: private, shared, reduction

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 9/38

OpenMP Directives

A legal OpenMP Directive must has the following format (C/C++):

Pragma Directive [clause[[,]clause] ...]
#pragma omp parallel, atomic, critical, ... 0 to many

• ������ For example:

#pragma omp parallel for collapse(2) private(tmp_v, d, v)

• Case sensitive
• Affects the block (single statement or wrapped by {}) after this directive
• �������� Here’s an official Cheat Sheet

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 10/38

https://www.openmp.org/wp-content/uploads/OpenMPRefCard-5-2-web.pdf

Constructs

���� What is the difference between construct and directive?

������ An OpenMP construct is a formation for which the directive is executable.1

#pragma omp parallel // <--\--- Directive

{ // |

printf("Do sth."); // | Construct

} // ---/

1https://www.openmp.org/spec-html/5.2/openmpse14.html

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 11/38

Work-distribution constructs

Work-distribution
constructs:
• single
• section
• for

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 12/38

Work-distribution constructs

Work-distribution
constructs:
• single
• section
• for

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 12/38

Work-distribution constructs

Work-distribution
constructs:
• single
• section
• for

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 12/38

parallel Directive

#include <stdio.h>

#include <omp.h>

int main() {

printf("Welcome to OpenMP!\n");

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf("hello(%d)", ID);

printf("world(%d)\n", ID);

}

printf("Bye!");

return 0;

}

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 13/38

Combined Constructs and Directives

Example 2: parallel for Directive

// Addition of two vectors

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

// Addition of two vectors

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

������� Not 4x speed up

���� Overhead: any combination of excess or indirect computation time, memory,
bandwidth, or other resources that are required to perform a specific task.

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 14/38

Combined Constructs and Directives

Example 2: parallel for Directive

// Addition of two vectors

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

// Addition of two vectors

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

������� Not 4x speed up

���� Overhead: any combination of excess or indirect computation time, memory,
bandwidth, or other resources that are required to perform a specific task.

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 14/38

Combined Constructs and Directives

Example 2: parallel for Directive

// Addition of two vectors

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

// Addition of two vectors

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

������� Not 4x speed up

���� Overhead: any combination of excess or indirect computation time, memory,
bandwidth, or other resources that are required to perform a specific task.

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 14/38

Combined Constructs and Directives (Cont.)

Valid for loops that can be parallelized by OpenMP:

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 15/38

Loop Schedule

���� Think about this…

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = f(i); // What if f is not O(1), eg. O(N)

}

Workload is unbalanced!

• schedule clause specifies how iterations of associatedloops are divided into
contiguous non-empty subsets, aka. chunks.

• Type: Static, Dynamic, Guided, Runtime, Auto

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 16/38

Loop Schedule

���� Think about this…

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = f(i); // What if f is not O(1), eg. O(N)

}

Workload is unbalanced!

• schedule clause specifies how iterations of associatedloops are divided into
contiguous non-empty subsets, aka. chunks.

• Type: Static, Dynamic, Guided, Runtime, Auto

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 16/38

Loop Schedule

���� Think about this…

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = f(i); // What if f is not O(1), eg. O(N)

}

Workload is unbalanced!

• schedule clause specifies how iterations of associatedloops are divided into
contiguous non-empty subsets, aka. chunks.

• Type: Static, Dynamic, Guided, Runtime, Auto

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 16/38

Loop Schedule

���� Think about this…

#pragma omp parallel for

for (int i = 0; i < N; i++) {

c[i] = f(i); // What if f is not O(1), eg. O(N)

}

Workload is unbalanced!

• schedule clause specifies how iterations of associatedloops are divided into
contiguous non-empty subsets, aka. chunks.

• Type: Static, Dynamic, Guided, Runtime, Auto

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 16/38

Loop Schedule - Static

#pragma omp parallel for schedule(static)

for (int i = 0; i < N; i++) {

c[i] = f(i);

}

Is this a good choice?

�� Pros: Less overhead in scheduling
�� Cons: Workload may be unbalanced

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 17/38

Loop Schedule - Dynamic

#pragma omp parallel for schedule(dynamic, 2)

for (int i = 0; i < N; i++) {

c[i] = f(i);

}

�� Pros: More flexible scheduling
�� Cons: More overhead in scheduling

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 18/38

Loop Schedule - Guided

#pragma omp parallel for schedule(guided, 2)

for (int i = 0; i < N; i++) {

c[i] = f(i);

}

• Compare to static: May yield a better workload balance under certain
circumstances

• Compare to dynamic: Less overhead to dispatch tasks
• In practice: Just try if it works better

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 19/38

Example 3: Let’s try out!

Source code at: 3_schedule.c

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 20/38

Loop Schedule

Static, Dynamic, Guided, Runtime, Auto

Find optimal schedule? �� NP-complete!

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 21/38

Loop Schedule

Static, Dynamic, Guided, Runtime, Auto

Find optimal schedule? �� NP-complete!

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 21/38

Nested for Loop

In some cases, we will encounter nested for loops. For example, matrix addition:

// Matrix Element-wise Addition

#pragma omp parallel for

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

#pragma omp parallel for collapse(2)

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

It’s not always a good idea to parallelize nested loops.

Think about locality and data dependency before you use collapse clause.

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 22/38

Nested for Loop

In some cases, we will encounter nested for loops. For example, matrix addition:

// Matrix Element-wise Addition

#pragma omp parallel for

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

#pragma omp parallel for collapse(2)

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

It’s not always a good idea to parallelize nested loops.

Think about locality and data dependency before you use collapse clause.

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 22/38

Nested for Loop

In some cases, we will encounter nested for loops. For example, matrix addition:

// Matrix Element-wise Addition

#pragma omp parallel for

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

#pragma omp parallel for collapse(2)

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

c[i][j] = a[i][j] + b[i][j];

}

}

It’s not always a good idea to parallelize nested loops.

Think about locality and data dependency before you use collapse clause.

ZJUSCT • HPC 101 - 2024 Summer | OpenMP directives and constructs • 22/38

Shared Data and Data Hazards

ZJUSCT • HPC 101 - 2024 Summer

Example: Data Hazards in Summation

#include <stdio.h>

#include <omp.h>

int main() {

int a[100];

int sum = 0;

// initialize

for (int i = 0; i < 100; i++) a[i] = i + 1;

// Sum up from 1 to 100

#pragma omp parallel for

for (int i = 0; i <= 99; i++) {

sum += a[i];

}

printf("Sum = %d\n", sum);

}

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 23/38

How Data Hazards Happen?

���� This case is especially important, you will encounter this again and again in
future study, eg. Computer Organization and Database System.

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 24/38

Scope and Data Hazard

• Shared & private data in default
• Explicit scopes definition

• private
• shared
• firstprivate
• lastprivate

• Data hazards happen when
operating shared data

int sum = 0;

// Sum up from 1 to 100

#pragma omp parallel for

for (int i = 0; i <= 99; i++) {

sum += a[i];

}

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 25/38

Resolve Data Hazard

• Critical Section
• Atomic Operations
• Reduction

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 26/38

Example: Solution with Critical Section

• Only one thread can enter critical
section at the same time.

• A critical section can contain
multiple statements.

• ������� Isn’t this serial again?

#pragma omp parallel for

for (int i = 0; i <= 99; i++) {

#pragma omp critical

{ sum += a[i]; }

}

printf("Sum = %d\n", sum);

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 27/38

Example: Solution with Critical Section

• Only one thread can enter critical
section at the same time.

• A critical section can contain
multiple statements.

• ������� Isn’t this serial again?

#pragma omp parallel for

for (int i = 0; i <= 99; i++) {

#pragma omp critical

{ sum += a[i]; }

}

printf("Sum = %d\n", sum);

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 27/38

Example: Solution with Atomic Operation

• Atomic operation cannot be
separated.

• Only can be applied to one
operation

• Limited set of operators supported

#pragma omp parallel for

for (int i = 0; i <= 99; i++) {

#pragma omp atomic

sum += a[i];

}

printf("Sum = %d\n", sum);

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 28/38

Example: Solution with Atomic Operation

• Atomic operation cannot be
separated.

• Only can be applied to one
operation

• Limited set of operators supported

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 29/38

Example: Solution with Reduction

• Create temporary private
variables for each thread

• Reduce these private variables
in the end

• Limited set of operators
supported

#pragma omp parallel for reduction(+:sum)

for (int i = 0; i <= 99; i++) {

sum += a[i];

}

printf("Sum = %d\n", sum);

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 30/38

Comparison

• Critical Region: Based on locking
• Atomic Operation: Based on
hardware atomic operations

• Reduction: only synchronize in the
end

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 31/38

Another Example: Naïve GEMM

//General Matrix Multiplication (GEMM)

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

for (int k = 0; k < N; k++) {

c[i][j] += a[i][k] * b[k][j];

}

}

}

ZJUSCT • HPC 101 - 2024 Summer | Shared Data and Data Hazards • 32/38

Miscellaneous

ZJUSCT • HPC 101 - 2024 Summer

Threads Synchronize

• �� Barrier: Wait until all thread reach here
• Implicit barrier in parallel region
• nowait clause

• �� Locking: wait until obtain the lock
• Often apply to data structures

ZJUSCT • HPC 101 - 2024 Summer | Miscellaneous • 33/38

Nested Parallel Region

• Disabled by default.
• Use omp_set_nested to
enable.

• Consider refactor the code.

int f(int n, int* a, int* b, int* c) {

#pragma omp parallel for

for (int i = 0; i < n; i++) {

c[i] = a[i] + b[i];

}

}

int main(){

...

#pragma omp parallel for

for (int i = 0; i < n; i++) {

f(n[i], a[i], b[i], c[i]);

}

}

ZJUSCT • HPC 101 - 2024 Summer | Miscellaneous • 34/38

False Sharing

• Supposed to be private, but
actually perform like
sharing

• Seems working
independently, but actually
sharing the same cache line

• Does harm to parallel
performance

Be cache-friendly and avoid false sharing: Make use of space locality

ZJUSCT • HPC 101 - 2024 Summer | Miscellaneous • 35/38

False Sharing

• Supposed to be private, but
actually perform like
sharing

• Seems working
independently, but actually
sharing the same cache line

• Does harm to parallel
performance

Be cache-friendly and avoid false sharing: Make use of space locality

ZJUSCT • HPC 101 - 2024 Summer | Miscellaneous • 35/38

Summary: How to Optimize a program with OpenMP

1. Where to parallelize: Profiling
2. Whether to parallelize: Analyze data dependency
3. How to parallelize: Analysis and Skills

• Sub-task Distribution
• Scheduling Strategy
• Cache and Locality
• Hardware Environment
• Somtimes: transform recursion to iteration

4. Get Down to Work: Testing

ZJUSCT • HPC 101 - 2024 Summer | Miscellaneous • 36/38

Tips

1. Ensure correctness while parallelizing
2. Be aware of overhead
3. Check more details in official documents

• For example, OpenMP on GPU.

ZJUSCT • HPC 101 - 2024 Summer | Miscellaneous • 37/38

References

• An introduction to parallel programming - Peter S. Pacheco, Matthew
Malensek

• SC17 - Loop Schedule for OMP

ZJUSCT • HPC 101 - 2024 Summer | Miscellaneous • 38/38

https://book.douban.com/subject/20374756/
https://book.douban.com/subject/20374756/
https://www.openmp.org/wp-content/uploads/SC17-Kale-LoopSchedforOMP_BoothTalk.pdf

Thank You

Let’s have a break!

ZJUSCT • HPC 101 - 2024 Summer | Miscellaneous • 38/38

	Outline
	Introduction
	OpenMP directives and constructs
	Shared Data and Data Hazards
	Miscellaneous

